Journal of Organometallic Chemistry, 424 (1992) 153–158 Elsevier Sequoia S.A., Lausanne JOM 22299

Sulphur compounds

CXLV *. Synthesis and properties of Cp₂TiS₂SiR₂, Cp₂TiS₂GeR₂, and Cp'₂TiS₂SnR₂ (Cp = η^{5} -C₅H₅, Cp' = η^{5} -C₅H₄CH₃, and R = C₆H₅)

Jörg Albertsen and Ralf Steudel *

Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, Sekr. C2, 1000 Berlin 12 (Germany)

(Received July 9, 1991)

Abstract

The halides $(C_6H_5)_2SiCl_2$, $(C_6H_5)_2GeBr_2$, and $(C_6H_5)_2SnCl_2$, react with Li_2S and $(\eta^5-C_5H_4R)_2TiCl_2$ ($R = H, CH_3$) to give respectively the four-membered titanacycles $Cp_2TiS_2Si(C_6H_5)_2$, $Cp_2TiS_2Ge(C_6H_5)_2$, and $Cp'_2TiS_2Sn(C_6H_5)_2$ which have been characterized by ¹H NMR, mass and UV spectroscopy. The new compounds form green crystals, which react with sulphur chlorides with precipitation of $(C_5H_4R)_2TiCl_2$. This reaction provides a route to formerly unknown sulphur-rich heterocycles of Group 14 elements.

Introduction

Titanocene chalcogenide complexes such as Cp_2TiS_5 (1), Cp_2TiSe_5 (2) and others have been used very successfully in the synthesis of a large number of sulphur homocycles [2,3], selenium homo- and hetero-cycles [4,5], and sulphur-rich heterocycles with carbon, phosphorus, arsenic and other ring constituents [6–9]. Two examples are given in eqs. 1 and 2:

$$Cp_2TiS_5 + S_2Cl_2 \rightarrow S_7 + Cp_2TiCl_2$$
(1)

 $Cp_2TiSe_5 + S_2Cl_2 \rightarrow Se_5S_2 + Cp_2TiCl_2$ ⁽²⁾

In order to explore new routes to the scarcely known sulphur-rich heterocycles with Si, Ge, and Sn as ring atoms [10–12], we have synthesized titanacycles containing four-membered TiS₂E rings (E = Si, Ge, Sn). The first such compound, $(C_5H_4CH_3)_2TiS_2Si(CH_3)_2$ (3), had been reported by Rauchfuss *et al.* [13], and forms green air-stable crystals containing a planar TiS₂Si cycle. Compound 3 reacts with disulphur dichloride, S₂Cl₂, to give $(C_5H_4CH_3)_2TiCl_2$ and extremely

^{*} For Part CXLIV see ref. 1.

moisture-sensitive compounds of type $(CH_3)_2SiS_n$ [14]. To obtain less sensitive and, it was hoped, crystalline derivatives, we have now treated diphenyl-silicon, -germanium, and -tin dihalides with Li₂S and titanocene dichloride according to eqs. 3, 4 and 5:

$$Cp_{2}TiCl_{2} + 2Li_{2}S + (C_{6}H_{5})_{2}SiCl_{2} \rightarrow Cp_{2}TiS_{2}Si(C_{6}H_{5})_{2} + 4LiCl$$
(3)

$$Cp_2TiCl_2 + 2Li_2S + (C_6H_5)_2GeBr_2 \rightarrow Cp_2TiS_2Ge(C_6H_5)_2 + 2LiCl + 2LiBr \quad (4)$$

$$Cp'_{2}TiCl_{2} + 2Li_{2}S + (C_{6}H_{5})_{2}SnCl_{2} \rightarrow Cp'_{2}TiS_{2}Sn(C_{6}H_{5})_{2} + 4LiCl$$
(5)

For the reaction shown in eq. 3 a solution of $(C_6H_5)_2SiCl_2$ in THF was treated at ambient temperature with Li₂S followed by Cp_2TiCl_2 . After 24 h stirring the dark solution was evaporated to dryness and the residue extracted with CH_2Cl_2 . After filtration and addition of n-hexane to the extract at $-78^{\circ}C$ dark green microcrystals of $Cp_2TiS_2Si(C_6H_5)_2$ (4) appeared; these are air stable for long periods. Satisfactory analytical data (C, H) were obtained for 4 (see Experimental).

The germanium and tin derivatives, $Cp_2TiS_2Ge(C_6H_5)_2$ (5) and Cp'_2TiS_2Sn $(C_6H_5)_2$ (6) were prepared analogously from $(C_6H_5)_2GeBr_2$ and $(C_6H_5)_2SnCl_2$.

All the compounds form air-stable, green microcrystals, fairly soluble in CS_2 , $CHCl_3$ and CH_2Cl_2 to give green solutions which are stable if air is excluded. Attempts to grow single crystals have so far failed. The identities of 4, 5, and 6 are based on elemental analysis and mass and ¹H NMR spectra. The mass spectra show the molecular ions and various characteristic fragment ions. The ¹H NMR spectra of all compounds are in accord with the assumption of a planar four-membered TiS₂E metallacycle as a central unit. The purity of all the compounds was checked by reversed-phase HPLC analysis using octadecylsilane as a stationary phase and acetonitrile as an eluent. By use of a diode-array detector the UV spectra of 4–6 were recorded at the time of their chromatographic separation

Fig 1. UV spectra of 4-6.

Table 1

Compound	$t_{\rm R}$ (min)	RS	
$\overline{Cp_2T_1S_2S_1(C_6H_5)_2}$	2.11	439	
$Cp_{2}T_{1}S_{2}Ge(C_{6}H_{5})_{2}$	2.13	443	
$Cp'_{2}T_{1}S_{2}Sn(C_{6}H_{5})_{2}$	3.46	629	
Cp ₂ TiS ₅	2.26	468	
Cp ⁷ ₂ TiS ₅	2.65	531	
S ₆	3 26	608	
S ₈	5 38	778	
S ₉	8.20	911	
S ₁₀	11.07	1002	

Retention times (t_R) and retention indices (RS) [18] for five titanocene chelate complexes in reversedphase HPLC (data of S₆, S₈, S₉, and S₁₀ are given for comparison; eluent, CH₃CN; octadecylsilane as a stationary phase, dead time 0.71 min)

(range, 190-800 nm; solvent, acetonitrile). The spectra are shown in Fig. 1; no absorption was observed in the range 600-800 nm.

The UV absorption spectra of 4, 5 and 6 are rather similar, with bands near 220, 350, and between 550 and 600 nm, the last being responsible for the green colour of the solutions. The spectrum of Cp_2TiS_5 is quite different (see Fig. 1), showing that the ring size of the metallacycle is of crucial importance.

The retention behaviour of the new compounds in high-pressure liquid chromatography (HPLC) is shown in Table 1. Since 4 and 5 rapidly react with methanol to give titanocene methoxy complexes, acetonitrile had to be used as eluent. While the retention times (t_R) of 4 and 5 are very similar, 6 shows a considerably higher t_R value, which is due to the two additional methyl groups, as can also be seen from the retention times of Cp_2TiS_5 and Cp'_2TiS_5 given in Table 1. Since t_R values depend on the geometry of the apparatus used as well as on the flow rate, retention indices (RS) are also given in Table 1; these are independent of such parameters [18], since they give the relative retention compared with those of reference materials. RS data are based on the sulphur homocycles S_6 , S_8 , S_9 , and S_{10} as reference substances [18].

Attempts to obtain similar titanium compounds from Mes_2SiCl_2 and Mes_2GeCl_2 (Mes = 2,4,6-trimethylphenyl) failed. In the case of Mes_2GeCl_2 reaction 6 took place, and the four-membered heterocycle (Mes_2GeS)₂ (7) was isolated. This compound, identified by elemental analysis, molecular mass determination, and mass spectrometry, forms colourless crystals which are air stable for long periods, its synthesis from hexamesitylcyclotrigermane and S₈ was reported previously, but no molecular mass measurement was made [19].

$$2\text{Mes}_{2}\text{GeCl}_{2} + 2\text{Li}_{2}\text{S} \rightarrow (\text{Mes}_{2}\text{GeS})_{2} + 4\text{LiCl}$$
(6)

When a solution of $Cp_2TiS_2Si(C_6H_5)_2$ (4), in CS_2 , was treated with S_2Cl_2 at $-78^{\circ}C$ the colour changed from green to red and Cp_2TiCl_2 separated from the solution. The mass spectrum of the residue after removal of the solvent exhibited the molecular ion for $(C_6H_5)_2SiS_4$ (8), indicating that reaction 7 had taken place: $Cp_2TiS_2Si(C_6H_5)_2 + S_2Cl_2 \rightarrow (C_6H_5)_2SiS_4 + Cp_2TiCl_2$ (7)

To our knowledge, 8 represents the first example of an Si-S heterocycle with neighbouring S-S bonds. Well known examples of related rings are the cyclic

compounds $(Et_2SiS)_3$, $(Et_2Si)_4S$, $(Et_2Si)_4S_2$, and $(Et_2Si)_3S_2$ [12b]. It is to be expected that reactions of the novel $Cp_2TiS_2Si(C_6H_5)_2$, $Cp_2TiS_2Ge(C_6H_5)_2$, and $Cp_2TiS_2Sn(C_6H_5)_2$ with sulphur chlorides and organic sulphenyl chlorides will provide new non-metallic heterocyclic compounds containing Si–S, Ge–S and Sn–S bonds, respectively. Work on these reactions is in progress.

Experimental

The following spectrometers were used: Varian MAT 311 A mass spectrometer (EI, 70 eV); Bruker WP 80 NMR spectrometer. Chemical shifts are given in ppm relative to internal $Si(CH_3)_4$. The molecular weight of $(Mes_2GeS)_2$ was determined by a KNAUER vapour pressure osmometer 11.00.

HPLC equipment: Varian 5000 pump (microprocessor controlled) with Valco loop injector (10 μ l), Waters Radial Pak 10C18 reversed-phase column (length 10 cm, inner diameter 8 mm) contained in a compression module, UV absorbance detector operating at 210 nm, Waters 990 diode-array detector with NEC APC III computer (512 diodes, range 190–800 nm). Commercially available acetonitrile (for chromatography) was used as an eluent. All manipulations were carried out with exclusion of air and moisture at ambient temperature. Solvents were carefully dried and distilled. (C₆H₅)₂GeBr₂ was prepared as described by Harris and Johnson [15,16] from GeCl₄, C₆H₅Br and Br₂. Mes₂SiCl₂ and Mes₂GeCl₂ were prepared as described by Wiberg and Neruda [17].

Preparation of $Cp_2TiS_2Si(C_6H_5)_2$ (4). To a solution of 10 mmol $(C_6H_5)_2SiCl_2$ in 10 ml of anhydrous THF at room temperature was added a suspension of 20 mmol of Li₂S in 10 ml of THF. After 10 min stirring the mixture was greenish-yellow. A solution of Cp_2TiCl_2 (10 mmol) in 10 ml of THF was added and the mixture stirred for 24 h. The olive-brown solution was evaporated to dryness and the residue extracted with 50 ml CH_2Cl_2 . The extract was filtered, then diluted with 50 ml of hexane, and the CH_2Cl_2 evaporated off. Cooling to $-78^{\circ}C$ (20 h) afforded 1.66 g of dark green microcrystals (39% yield).

 $(C_5H_5)_2TiS_2Si(C_6H_5)_2$ (4): ¹H NMR (CDCl₃): δ 7.86–7.74 m; 7.38–7.30 m (C₆H₅); 6.49 s (Cp). EI–MS ($T = 120^{\circ}$ C): m/z 424 (74%, Cp₂TiS₂Si(C₆H₅)₂⁺); 359 (100%, CpTiS₂(C₆H₅)₂⁺); 282 (39%, CpTiS₂Si(C₆H₅)⁺) and further signals. UV (CH₃CN): 195 nm (100%); 222 nm (30%); 246 nm (11%); 278 nm (6%); 342 nm (9%), 575 nm (4%). Anal. Found: C, 60.9; H, 4.8. C₂₂H₂₀TiS₂Si (424.50) calc.: C, 62.2; H, 4.8%.

Preparation of $Cp_2TiS_2Ge(C_6H_5)_2$ (5). This was prepared analogously from 10 mmol of $(C_6H_5)_2GeBr_2$, 20 mmol of Li_2S and 10 mmol of Cp_2TiCl_2 was carried out as described above (1.64 g yield; 35%).

 $(C_5H_5)_2TiS_2Ge(C_6H_5)_2$ (5): ¹H NMR (CDCl₃): δ 7.80–7.60 m; 7.57–7.20 m (C₆H₅); 6.39 s (Cp). EI–MS ($T = 120^{\circ}C$): m/z 470 (20%, Cp₂TiS₂Ge(C₆H₅)₂⁺); 405 (44%, CpTiS₂Ge(C₆H₅)₂⁺); 328 (13%, CpTiS₂Ge(C₆H₅)⁺); 222 (100%, Cp-TiS(C₆H₅)⁺) and further signals. UV (CH₃CN): 195 nm (100%); 222 nm (32%); 350 nm (6%); 600 nm (2%). Anal. Found: C, 54.3; H, 4.2. C₂₂H₂₀TiS₂Ge (469.02) calc.: C, 53.6; H, 4.3%.

Preparation of $Cp'_2TiS_2Sn(C_6H_5)_2$ (6). This was prepared analogously from 10 mmol of $(C_6H_5)_2SnCl_2$, 20 mmol of Li_2S and 10 mmol of Cp'_2TiCl_2 . The product mixture contained several of the known heterocycles $((C_6H_5)_2SnS)_x$. It was purified by extraction with hexane (2.12 g yield; 39%).

 $(CH_{3}C_{5}H_{4})_{2}TiS_{2}Sn(C_{6}H_{5})_{2}$ (6): ¹H NMR (CDCl₃): δ 7.77–7.64 m; 7.40–7.30 m (C₆H₅); 6.12 m (Cp); 2.15 s (CpMe). EI–MS ($T = 180^{\circ}C$): m/z 544 (25%, Cp'₂TiS₂Sn(C₆H₅)₂⁺); 465 (74%, Cp'TiS₂Sn(C₆H₅)₂⁺); 387 (40%, Cp'TiS₂Sn(C₆H₅)⁺); 77 (100%, C₆H₅⁺) and further signals. UV (CH₃OH): 225 nm (100%); 354 nm (sh 12%); 550 nm (2%). Anal. Found: C, 52.5; H, 4.5. C₂₄H₂₄TiS₂Sn (543.19) calc.: C, 53.1; H, 4.5%.

Reaction of Mes_2GeCl_2 with Li_2S and Cp_2TiCl_2 (7). This was carried out analogously from 10 mmol of Mes_2GeCl_2 , 20 mmol of Li_2S , and 10 mmol of Cp_2TiCl_2 . The main product was, unexpectedly, the known $(Mes_2GeS)_2$ (7), in 10% yield.

(Mes₂GeS)₂ (7): ¹H NMR (CDCl₃): δ 6.77 s (Me₃C₆H₂); 2.48 s; 2.26 s ((CH₃)₃C₆H₂). EI-MS ($T = 200^{\circ}$ C): m/z 686 (2%, M⁺); 567 (100%, M⁺-Mes); 344 (60%, Mes₂GeS⁺) and further signals. Anal. Found: C, 63.3; H, 7.0. C₃₆H₄₄Ge₂S₂ (686.06) calc.: C, 63.0; H, 6.5%. Molecular mass determined osmometrically in CH₂Cl₂: 680 ± 20.

Reaction of $Cp_2TiS_2Si(C_6H_5)_2$ with S_2Cl_2 (8). A solution of 0.5 mmol S_2Cl_2 in 10 ml CS_2 was added during 30 min to a solution of 0.5 mmol of $Cp_2TiS_2Si(C_6H_5)_2$ in 20 ml of CS_2 at $-78^{\circ}C$. The colour turned from green to red. The solution was evaporated to dryness and the residue extracted with n-pentane ($-78^{\circ}C$; 20 ml). The insoluble Cp_2TiCl_2 was filtered off and the extract evaporated to dryness. The colourless waxy $S_4Si(C_6H_5)_2$ obtained was stable in an inert atmosphere below $-20^{\circ}C$. No side products were observed.

 $(C_6H_5)_2SiS_4$ (8): ¹H NMR (CDCl₃): δ 7.88–7.65 m; 7.59–7.36 m (C₆H₅). EI-MS ($T = 25^{\circ}C$): m/z 310 (1%, $(C_6H_5)_2SiS_4^+$); 278 (2%, $(C_6H_5)_2SiS_3^+$); 246 (2%, $(C_6H_5)_2SiS_2^+$); 214 (4%, $(C_6H_5)_2SiS^+$); 64 (100%, S_2^+) and further signals.

Acknowledgements

We are grateful to the Deutsche Forschungsgemeinschaft and Verband der Chemischen Industrie for support.

References

- 1 R Steudel, S Forster and J Albertsen, Chem Ber, 124 (1991) 2357
- 2 M Schmidt, B Block, H.D Block, H. Kopf and E Wilhelm, Angew Chem, 80 (1968) 660, Angew Chem, Int. Ed Engl, 7 (1968) 632.
- 3 R Steudel, in A. Muller and B. Krebs, (Eds.), Sulfur Its Significance for Chemistry, for the Geo-, Bio- and Cosmosphere and Technology, Elsevier, Amsterdam 1984, p 3
- 4 R Steudel and E-M Strauss, Adv Inorg Chem Radiochem, 28 (1984) 135
- 5 R Steudel and E.-M. Strauss, in I. Hauduc and D B Sowerby, (Eds.), The Chemistry of Inorganic Homo- and Heterocycles, Vol 2, Academic Press, London 1987, p 769.
- 6 R Steudel, R Strauss and D. Jensen, Chemikerztg, 109 (1985) 349.
- 7 R. Steudel and M Kustos, Phosphorus Sulfur Silicon, 62 (1991) 127
- 8 B Holz and R Steudel, unpublished results, B Holz, Dissertation, Technical University Berlin 1991
- 9 R. Steudel, B. Holz and J. Pickardt, Angew Chem, 101 (1989) 1301; Angew Chem., Int Ed. Engl., 28 (1989) 1269
- 10 I. Haiduc, in I. Haiduc and D.B. Sowerby (Eds.), The Chemistry of Inorganic Homo- and Heterocycles, Vol. 1, Academic Press, London, 1987, Chapts. 11 and 13, pp. 349, 372.
- 11 B Mathiasch, in I Haiduc and D.B. Sowerby (Eds.), The Chemistry of Inorganic Homo- and Heterocycles, Vol 1, Academic Press, London, 1987, Chap. 16, p 405

- 12 Leading references (a) D A Armitage, in The Chemistry of Organic Silicon Compounds, John Wiley, London, 1989, Chap. 23, p. 1395; (b) C W Carlson and R. West, Organometallics, 2 (1983) 1798; (c) B. Becker and W. Wojnowski, J Organomet Chem, 346 (1988) 287
- 13 D.M. Giolando, T.B. Rauchfuss and G.M. Clark, Inorg. Chem, 26 (1987) 3082.
- 14 J Albertsen, Diploma Thesis, Technical University Berlin, 1988
- 15 D M. Harris, W.H. Nerbergall and O.H Johnson, Inorg. Synth, (1957) 70.
- $16\,$ O H $\,$ Johnson and D M $\,$ Harris, Inorg. Synth., (1957) 74 $\,$
- 17 N Wiberg and B. Neruda, Chem Ber., 99 (1966) 740.
- 18 R Steudel, E -M Strauss and D Jensen, Z. Naturforsch., Teil B, 45 (1990) 1282
- 19 T Tsumaraya, S. Sato and W. Ando, Organometallics, 7 (1988) 2015